首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   120篇
  免费   37篇
  国内免费   40篇
化学   169篇
晶体学   1篇
数学   1篇
物理学   26篇
  2023年   23篇
  2022年   13篇
  2021年   17篇
  2020年   22篇
  2019年   14篇
  2018年   18篇
  2017年   16篇
  2016年   26篇
  2015年   13篇
  2014年   13篇
  2013年   6篇
  2012年   1篇
  2010年   1篇
  2009年   1篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  1999年   3篇
  1998年   1篇
  1997年   2篇
排序方式: 共有197条查询结果,搜索用时 31 毫秒
1.
分析和总结了催化剂催化有机化学反应的4种基本方式,包括建立电子流动通道、改变电子流动属性、加强电子流动能力和稳定电子流动结果。本文旨在揭示有机化学反应中催化剂作用的本质,以便学生更加深刻理解并掌握有机化学反应。  相似文献   
2.
Research on Chemical Intermediates - Owing to the simultaneous utilization of photogenerated electrons and holes, coupling light-driven hydrogen (H2) evolution reaction (HER) and biomass-derived...  相似文献   
3.
Conjugated polymers feature promising structure and properties for photocatalytic water splitting. Herein, a hydrolysis strategy was demonstrated to rationally modulate the surface hydrophilicity and band structures of conjugated poly-benzothiadiazoles. High hydrophilicity not only enhances the dispersions of polymeric solids in an aqueous solution but also reduces the absorption energy of water molecules. Besides, both theoretical and experimental results reveal that a more positive valence band potential is generated, which contributes to enhancing the photocatalytic water oxidation performance. Accordingly, the surface-modified conjugated polymers show largely promoted photocatalytic water oxidation activities by deposition of cobalt oxides as cocatalysts.  相似文献   
4.
Borocarbonitride (BCN) materials are newly developed oxidative dehydrogenation catalysts that can efficiently convert alkanes to alkenes. However, BCN materials tend to form bulky B2O3 due to over-oxidation at the high reaction temperature, resulting in significant deactivation. Here, we report a series of super stable BCN nanosheets for the oxidative dehydrogenation of propane (ODHP) reaction. The catalytic performance of the BCN nanosheets can be easily regulated by changing the guanine dosage. The control experiment and structural characterization indicate that the introduction of a suitable amount of carbon could prevent the formation of excessive B2O3 from BCN materials and maintain the 2D skeleton at a high temperature of 520 °C. The best-performing catalyst BCN exhibits 81.9 % selectivity towards olefins with a stable propane conversion of 35.8 %, and the propene productivity reaches 16.2 mmol h−1 g−1, which is much better than hexagonal BN (h-BN) catalysts. Density functional theory calculation results show that the presence of dispersed rather than aggregated carbon atoms can significantly affect the electronic microenvironment of h-BN, thereby boosting the catalytic activity of BCN.  相似文献   
5.
In situ photo-deposition of both Pt and CoOx cocatalysts on the facets of poly (triazine imide) (PTI) crystals has been developed for photocatalytic overall water splitting. However, the undesired backward reaction (i.e., water formation) on the noble Pt surface is a spontaneously down-hill process, which restricts their efficiency to run the overall water splitting reaction. Herein, we demonstrate that the efficiency for photocatalytic overall water splitting could be largely promoted by the decoration of Rh/Cr2O3 and CoOx as H2 and O2 evolution cocatalysts, respectively. Results reveal that the dual cocatalysts greatly extract charges from bulk to surface, while the Rh/Cr2O3 cocatalyst dramatically restrains the backward reaction, achieving an apparent quantum efficiency (AQE) of 20.2 % for the photocatalytic overall water splitting reaction.  相似文献   
6.
Hydrogen spillover, involving the surface migration of dissociated hydrogen atoms from active metal sites to the relatively inert catalyst support, plays a crucial role in hydrogen-involved catalytic processes. However, a comprehensive understanding of how H atoms are driven to spill over from active sites onto the catalyst support is still lacking. Here, we examine the atomic-scale perspective of the H spillover process on a Pt/Cu(111) single atom alloy surface using machine-learning accelerated molecular dynamics calculations based on density functional theory. Our results show that when an impinging H2 dissociates at an active Pt site, the Pt atom undergoes deactivation due to the dissociated hydrogen atoms that attach to it. Interestingly, collisions between H2 and sticking H atoms facilitate H spillover onto the host Cu, leading to the reactivation of the Pt atom and the realization of a continuous H spillover process. This work underscores the importance of the interaction between gas molecules and adsorbates as a driving force in elucidating chemical processes under a gaseous atmosphere, which has so far been underappreciated in thermodynamic studies.  相似文献   
7.
Light-driven fixation of CO2 in organics has emerged as an appealing alternative for the synthesis of value-added fine chemicals. Challenges remain in the transformation of CO2 as well as product selectivity due to its thermodynamic stability and kinetic inertness. Here we develop a boron carbonitride (BCN) with the abundant terminal B/N defects around the mesoporous walls, which essentially enhances surface active sites as well as charge transfer kinetics, boosting the overall rate of CO2 adsorption and activation. In this protocol, anti-Markovnikov hydrocarboxylation of alkenes with CO2 to an extended carbon chain is achieved with good functional group tolerance and specific regioselectivity under visible-light irradiation. The mechanistic studies demonstrate the formation of CO2 radical anion intermediate on defective boron carbonitride, leading to the anti-Markovnikov carboxylation. Gram-scale reaction, late-stage carboxylation of natural products and synthesis of anti-diabetic GPR40 agonists reveal the utility of this method. This study sheds new insight on the design and application of metal-free semiconductors for the conversion of CO2 in an atom-economic and sustainable manner.  相似文献   
8.
Carbon neutrality has drawn increasing attention for realizing the carbon cyclization and reducing the greenhouse effect. Although the C1 products, such as CO, can be achieved with a high Faraday efficiency, the targeted production of C2 fuels as well as the mechanism have not been systematically investigated. In this work, we carry out a first-principles study to screen dual-atom catalysts (DACs) for producing C2 fuels through the electrocatalytic carbon monoxide reduction reaction (e-CORR). We find that methanol, ethanol and ethylene can be produced on both DAC−Co and DAC−Cu, while acetate can be achieved on DAC−Cu only. Importantly, methanol and ethylene are preferred on DAC−Co, while acetate and ethylene on DAC−Cu. Furthermore, we show that the explicit solvent can enhance the adsorption and influence the protonation steps, which subsequently affects the protonation and dimerization behavior as well as the performance and selectivity of e-CORR on DACs. We further demonstrate that the C−C coupling is easy to be formed and stabilized if the Integrated Crystal Orbital Hamilton Population (ICOHP) is low because of the low energy barrier. Our findings provide not only guidance on the design of novel catalysts for e-CORR, but an insightful understanding on the reduction mechanism.  相似文献   
9.
The chemical protonation of graphitic carbon nitride (CN) solids with strong oxidizing acids, for example HNO3, is demonstrated as an efficient pathway for the sol processing of a stable CN colloidal suspension, which can be translated into thin films by dip/disperse‐coating techniques. The unique features of CN colloids, such as the polymeric matrix and the reversible hydrogen bonding, result in the thin‐film electrodes derived from the sol solution exhibiting a high mechanical stability with improved conductivity for charge transport, and thus show a remarkably enhanced photo‐electrochemical performance. The polymer system can in principle be broadly tuned by hybridization with desired functionalities, thus paving the way for the application of CN for specific tasks, as exemplified here by coupling with carbon nanotubes.  相似文献   
10.
Ternary core–shell heterostructured rutile@anatase@CrxOy nanorod arrays were elaborately designed as photoanodes for efficient photoelectrochemical water splitting under visible‐light illumination. The four‐fold enhanced and stabilized visible‐light photocurrent highlights the unique role of the interim anatase layer in accelerating the interfacial charge transfer from the CrxOy chromophore to rutile nanorods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号